为加强与国内外统计学者的沟通研讨,共同探讨统计学的前沿理论研究,为我校师生创建一个学习研讨的平台,西南财经大学数据科学与商业智能联合DB视讯(中国)将于2025年6月21日-22日举办“2025 Complex Data Analysis Workshop in SWUFE”。
一、报告嘉宾
姓名 | 学校 | 研究领域 | 报告题目 |
陈可慧 | 匹兹堡大学 | Modeling the variance and covariance structures of complex functional data and network data, as well as nonparametric prediction for functional data, relational-data and survival outcomes. | A Joint Modeling Approach for Multilayer Egocentric Social Networks, with Application to Mental Health Studies in Elder Subjects |
戴晓武 | 加州大学洛杉矶分校 | Developing statistical theory and methodology to address real-world problems that involve computational, inferential, and economic considerations. | Statistical Learning via Partial Derivatives |
郭方健 | 密歇根大学 | Replicable data analysis, causal inference and statistical inference in non-standard cases. | Hunt and Test with Generalized Scores |
雷径 | 卡耐基梅隆大学 | Predictive inference, data privacy, network data, and single-cell multi-omics data analysis. | Discrete Argmin Inference Using Cross-Validated Exponential Mechanism |
任钊 | 匹兹堡大学 | High-dimensional statistical inference, robust inference, graphical models, nonparametric function estimation, and applications in statistical genomics. | Sparse Heteroskedastic PCA in High Dimensions |
夏冬 | 香港科技大学 | High-dimensional statistics, machine learning theory and optimization. | Online Decision Making: Algorithm, Regret, Constraints and Uncertainty |
张贻辰 | 普渡大学 | Online inference, distributed learning with data heterogeneity and forecasting and optimization in time series. | Online Estimation and Inference for Robust Policy Evaluation in Reinforcement Learning |
朱裕华 | 加州大学洛杉矶分校 | Bridges the gap between partial differential equations and machine learning, with a focus on reinforcement learning, stochastic optimization, and uncertainty quantification. | Optimal PhiBE—A Model-Free PDE-Based Framework for Continuous-Time Reinforcement Learning |
二、活动时间
2025年6月21日-22日。
三、面向对象
主要面向本校师生,同时欢迎其他高校数学、统计学、数据科学、经济学、计算机科学等相关专业研究生、青年教师、研究员参加。
四、联系电话
论坛相关咨询请联系028-87352207。