系列讲座|Large Segmenting Multiple Time Series by Contemporaneous Linear Transformation: PCA for Time Series-数据科学与商业智能联合DB视讯(中国)

DB视讯(中国)

您当前的位置: 首 页 > 学术活动 > 学术报告 > 正文

系列讲座|Large Segmenting Multiple Time Series by Contemporaneous Linear Transformation: PCA for Time Series

题目:Large Segmenting Multiple Time Series by Contemporaneous Linear Transformation: PCA for Time Series

主讲人:伦敦政治经济学院 姚琦伟教授

主持人:统计学院 常晋源教授

时间:2021810日(周二)晚上18:30-21:30

            2021811日(周三)晚上18:30-21:30

            2021812日(周四)晚上18:30-21:30

            2021813日(周五)晚上18:30-21:30

地点:腾讯会议,652 167 503


报告摘要:

In these talks, we seek for a contemporaneous linear transformation for a p-variate time series such that the transformed series is segmented into several lower-dimensional subseries, and those subseries are uncorrelated with each other both contemporaneously and serially. The method may be viewed as an extension of principal component analysis (PCA) for multiple time series. Technically it also boils down to an eigen analysis for a positive definite matrix. When p is large, an additional step is required to perform a permutation in terms of either maximum cross-correlations or FDR based on multiple tests. The asymptotic theory is established for both fixed p and diverging p when the sample size n tends to infinity. Numerical experiments with both simulated and real datasets indicate that the proposed method is an effective initial step in analysing multiple time series data, which leads to substantial dimension-reduction in modelling and forecasting high-dimensional linear dynamical structures. The method can also be adapted to segment multiple volatility processes.


主讲人简介:

姚琦伟教授,英国伦敦政治经济学院统计系教授,英国皇家统计学会会士,美国统计协会会士,数理统计学会会士,国际统计研究学会选举会员,泛华统计学会会员。主要研究领域为时间序列分析、高维时间序列建模和预测、降维和因子建模等。迄今已在AoS、Biometrika、Econometrica、JoE、JASAJRSSB等期刊上发表学术论文90篇,并取得EPSRC、BBSRC等英国国家基金会支持的多项研究基金项目。现在担任JRSSB的联合主编,曾担任AoS、JBES、JASAStatistica Sinica等期刊的副主编和联合主编。


电话:86-028-87352207                
地址:四川省成都市青羊区光华村街55号                
邮编:610074                
西南财经大学 数据科学与商业智能联合DB视讯(中国) 版权所有                
蜀ICP备05006386号