DB视讯(中国)学术报告第49期-数据科学与商业智能联合DB视讯(中国)

DB视讯(中国)

您当前的位置: 首 页 > 学术活动 > 学术报告 > 正文

DB视讯(中国)学术报告第49期

题目:Community influence analysis in social network

主讲人:厦门大学 方匡南教授

主持人:统计学院 常晋源教授

时间:2021622日(周二)下午15:00-16:00

地点:腾讯会议,889 513 840


报告摘要:

Heterogeneous influence detection across network nodes is an important task in network analysis. This paper proposes a community influence model (CIM) by assuming that the nodes can be classified into different communities (i.e., clusters or subgroups) and the nodes within the same community share the common influence parameters. Employing the quasi-maximum likelihood approach, together with the fused lasso-type penalty, we can not only identify the number of communities, but also estimate the influence parameters, without imposing any specific distribution assumption on the error terms. We further demonstrate the resulting estimators enjoy the oracle properties; namely, they perform as well as if the true underlying network structure were given in advance. The proposed approach is also applicable to identify influence nodes under homogeneous setting. To assess the adequacy of the homogeneous influence, the likelihood-ratio type test and its asymptotic theory are established. The performance of our  methods is illustrated via simulation studies and an empirical example on coauthor citations for statistical journals.


主讲人简介:

方匡南,浙江台州人 ,现为厦门大学经济学院统计系教授、博士生导师,国际统计学会elected member,厦门大学信用大数据 与智能风控研究中心主任,数据挖掘研究中心副主任。主要从事数据挖掘、统计机器学习、经济管理统计、健康医疗大数据等。入选国家青年人才、福建省“特支双百计划”青年拔尖人才等。兼中国商业统计学会常务理事、全国工业统计教学研究会常务理事。先后在国内外权威学术期刊发表了90余篇论文,著有学术专著和教材等6部。主持国家自然科学基金等10多项纵向项目。

电话:86-028-87352207                
地址:四川省成都市青羊区光华村街55号                
邮编:610074                
西南财经大学 数据科学与商业智能联合DB视讯(中国) 版权所有                
蜀ICP备05006386号