题目:Asymptotic distributions of high-dimensional distance correlation inference
主讲人:南方科技大学 邵启满教授
主持人:统计学院 常晋源教授
时间:2021年5月17日(周一)上午10:00-11:00
地点:柳林校区通博楼B212会议室
报告摘要:
Distance correlation has become an increasingly popular tool for detecting the nonlinear dependence between a pair of potentially high-dimensional random vectors. Most existing works have explored its asymptotic distributions under the null hypothesis of independence between the two random vectors when only the sample size or the dimensionality diverges. Yet its asymptotic null distribution for the more realistic setting when both sample size and dimensionality diverge in the full range remains largely underdeveloped. In this talk, we will develop the central limit theorem and associated rates of convergence for a rescaled test statistic based on the bias-corrected distance correlation in high dimensions under some mild regularity conditions and the null hypothesis. Our new theoretical results reveal an interesting phenomenon of blessing of dimensionality for high-dimensional distance correlation inference in the sense that the accuracy of normal approximation can increase with dimensionality. This talk is based on a joint work with Lan Gao, Yingying Fan and Jinchi Lv.
主讲人简介:
邵启满,南方科技大学统计与数据科学系创系系主任,讲席教授。1983年毕业于杭州大学(现浙江大学),1986年获硕士学位,1989年获中国科学技术大学博士学位。邵启满先后任教于杭州大学、新加坡国立大学、美国Oregon大学、香港科技大学、香港中文大学。其主要从事概率统计基础理论的研究,他系统深入地开展了自正则化极限理论, 建立了自正则化大偏差、中偏差定理;开展完善了正态与非正态逼近的斯坦因方法,建立了随机浓度不等式和确定极限分布的基本方法;深入研究了相依变量极限理论,开展出了一系列重要的矩和概率不等式,建立了强逼近弱收敛等基础性工作。其于2015年获国家自然科学二等奖(第一完成人), 2010年在国际数学家大会(ICM)作45分钟邀请报告,2001年当选国际数理统计学会(Institute of Mathematical Statistics)(IMS)会士;曾任IMS会士选拨委员会主席,现为IMS理事会常务理事; 曾任概率统计顶级国际期刊《Annals of Statistics(统计年刊)》、《Annals of Applied Probability(应用概率年刊)》编委;作为首位华人学者,他将出任《Annals of Applied Probability(应用概率年刊)》联合主编。